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THE OSCILLATIONS OF A SATELLITE PROBE TOWED ON AN INEXTENSIBLE LINE IN 
AN INHOMOGENEOUS ATMOSPHERE* 

E.M. SHAKHOV 

The oscillations of a low-mass satellite towed by an orbital craft or 

station by means of a long, inextensible line, are considered. The 

oscillations arise as a result of the action of aderodynamic resistance 

and tension in the line in an atmosphere of variable density. When the 

drag coefficient of the satellite-pendulum is known, the period of 

oscillations is governed by the density of the atmosphere at the flight 

altitude of the orbital station and the differences in the amplitudes and 

half-periods in the case of upward and downward deviations from the 

position of relative equilibrium, are characterized by the density gradient 

of the atmosphere. Possible ways of utilizing the satellite-pendulum as 

the means of acquiring information, and the necessary requirements for 

making the mathematical model more accurate, are discussed. 

A satellite in tow launched from an orbital object deceleratesunderthe action of atmos- 

pheric resistance and recedes from the orbital object by a distance governed by the length of 

the line. According to /l/, a typical length of the line is L= l-100 and the mass of the 

satellite is about 500 kg. The present paper will deal with the motions of a lightweight 

satellite probe with mass of about 1 kg. When the line unwinds, oscillations occur along it 

and these must be damped in an appropriate manner. Following this, the aerodynamic resistance 

and tension in the line cause the satellite probe to enter themodeof steady state oscillations 

in the atmosphere of variable density. The present paper is concerned with the study of these 

oscillations. 

1. Equations of motion. Let us consider the relative motion of a satellite probe of 

mass m attached by means of a weightless inextensible line of constant length L to an orbital 

v, 
craft whose mass is large compared with the mass of the probe. We 

shall regard the vehicle and the probe as material points. We shall 
n 

J!& 

assume that the craft moves along a cricular orbit of radius R, with 

centre at the point 0 (coinciding with the centre of gravity), at 

constant angular velocity V,. We shall introduce a polar coordinate 

N system with polar axis OP. Let the position of the craft be determined 

by the point K, and that of the probe by the point M. The coordinates 

G 
M of the vehicle and probe in the frame of reference adopted here are 

We shall also introduce 

Y 
D 

'(R,, 0,) and (R,8) respectively (Fig.1). 

8 *, 
a moving polar coordinate system with polar axis KO, so that the 

latter frame of reference rotates with angular velocity o0 = VJR,. 
0 P The position of the point M in this system is determined by the 

distance KM and angle CL. We assume that the line is stretched, so 

Fig.1 that KM = L. 
We shall assume for simplicity that there is no wind and the force 

of resistance (drag) is directed along the tangent to a circle of radius R with centre at the 
point 0. The force of gravity is directed towards the centre, and its magnitude is G = mg, 
@dW where g, is the acceleration of free fall in the orbit Ro. 

The equation of the oscillations in the rotating polar coordinate systemandtheexpression 

for the reaction of the line, have the form 

a" - Dm-‘L-l sin p + g&l (RpSRv2 cos p - sin a) = 0 

N = mL (q, + a’)a + D cos fJ + mg, (RosRLB sin p - cos a) 
(1.1) 

(D is the aerodynamic resistance, N is the tension in the line, and p is the angle between 

the force of gravity and the tangent to the circle of relative motion of the probe). 
The swinging probe has a position of equilibrium near a ='fan, i.e. almost on the orbit 

R,, behind the craft. The force of aerodynamic resistance generates a momentum which restores 
the position of equilibrium. The last term in the equation of motion (1.1) characterizes the 
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resultant effect of the mutually competing gravity and centrifugal forces, and the term is 

non-zero even when the acceleration due to gravity is constant. 

We shall use the following geometrical relations: 

cpl = tjK - 8, p = ilzn - a - cp, y = ‘Izn -a 

sin 'p = LR-’ sin a, AR=R-RR,=-Lsiny 

Let us change, in (l.l), from a to v and use the fact that the length of the line L is 

small compared with the radius of the orbit R,. Retaining the principal terms of .the 

expansions in LRoel, we obtain 

y" + (Dm+L-l - 30,’ co9 y) sin y = 0 (1.2) 
Nm-‘L-1 = (0, - y’)* f 20,* sin* y - 00* COS* 'y + 

Dm-‘L-l cos y 

System (1.2) is closed by the expression for the aerodynamic resistance D. We shall 

assume that the density of the atmosphere decreases exponentially with altitude. Since the 
resistance is proportional to the density, we can write it as follows: 

D = DoQB’nv, D, = ‘I acDPoVo*S (4.3) 

Acre D, is the aerodynamic resistance at the orbit RO, the numerical value of the 

parameter 6 depends on the length of the line L and depends only slightly on the flight 

altitude H, and 6~1 when L ~10 km. 
At the orbit we have V,z BOOOm/sec the density at the flight altitude of H = 230 km 

is p. -iO-10kg/m3, and the streamlining mode is free-molecular, so that in the case of, for 
example, a sphere we have cO" 2.6. If the characteristic surface is S=lm2, then D, = 10-Z 
kg/set. The corresponding acceleration for a 1 kg probe is 0.01 m/sec2. 

The equation of oscillations (1.1) includes the effect of rotation along the orbit. If 
the frequency of oscillations o, governed by the aerodynamic resistance is much greater than 
the frequency of rotation oO, then the second term in the brackets in the equation of 
oscillations (1.1) can be neglected, and this leads to a pendulum equation in the inertial 
coordinate system 

y" + Dm-‘L-l sin y = 0 (1.4) 

with 

ma = D,m-lL-l > g,R,-’ = o * 0 (1.5) 
Condition (1.5) imposes a limit on the line length L: 

L < ag,lR,, a = D,m-l (1.6) 

At the altitude H = 230 the ratio a/g, = iOTg and increases by an order of magnitude 

when the altitude is reduced to H = 180. 

2. Linear and weakly non-linear oscillations. We shall first consider the small 

amplitude oscillations. The main difference between the oscillation Eq.cl.2) and the classical 

equation of the mathematical pendulum lies in the asymmetrical dependence (1.3) of the 

resistance D on y. The asymmetrical property is retained even when we confine ourselves to 

weakly non-linear, small amplitude oscillations. Expanding the functions in (1.2) in powers 

of y and confining ourselves to terms with y*, we obtain 

r" + (o* - 30,S)y + hJPy* = 0 (2.4) 
Nrn-‘L-l = (coo - y’)” -j- 26l,*y* + O* (1 + 6y - ‘/& - 

00” (1 - l/aYz) 

We note at once the case when the oscillations are linear. When 6-0, we obtain 

harmonic oscillations of frequency Q, with period T, 

SP = 02 - 30,*, T, = 2nw (2.2) 

If the line is sufficiently short, we can neglect o0 in the expression for 9. For 
example, when a = 0.01 m/set and L = 100 m, we have the period TO% 10 min.Remembering that the 

period of a single revolution of the satellite about the Earth at an altitude of H = 200-300 
km is about 90 min, we can find the conditions under which o,, should be taken into account. 

From the period of oscillations T,, we can determine the resistance of the body 

D, = mL (Td(2n))’ (2.3) 

When the coefficient of resistance an is known, formula (2.3) will give the density of 

the atmosphere pa at the flight altitude. 
Thus we can obtain valuable information from the linear oscillations of a satellite- 

pendulum on a short line. The information becomes much more extensive when a long line and 

non-linear oscillations are used. 
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Let us turn to Eq.CZ.1) and solve for it a problem with the following initial conditions: 

y =-y+, y'= 0 when t =0 (2.4) 

Remembering that 6% 1, we shall construct an approximate solution of problem (2.1)- 
(2.4) using the perturbation method. Let us write 

y = Y+Y (U t, = Qt (2.5) 

We have the following problem for the function Y: 

Y” + Y + &Y2 = 0; Y (0) = 1, Y’ (0) = 0 (2.6) 

e = 6y + 6PW 

and we shall seek its solution in the form of expansions in powers of E 

y 01, e) = y, (7) + EY, (r) + e2Y, (z) + . . . 
t, = 62t = 7 f Ejl (T) + EajZ (T) + . . . 

In the zeroth approximation in e we have 

Y, (t) = cos r 

To a first approximation we can write (a prime denotes a derivative with respect to T) 

fl = 0, Y," _t Y, = -cos% 

The solution of a differential equation satisfying the homogeneous initial conditions is: 

Yl = -I/* + ‘/&OS z + l/&OS 2t 

The solution to a first approximation has the same period T, as the zeroth approximation 

YO. However, this solution is already asymmetrical. Indeed, Y,.(O) = 0, Y, (n) = --e/s, Y, (llzn) = 
--a/p 

To a second approximation we have fz (z) = 5/12T and the corresponding solution is 

Yz = --‘/a + 28 /l**cos ‘t + l/&OS 22 f ‘/,&OS 32 

Thus the period becomes distorted only in the second approximation, while the difference 

in the amplitudes due to the upward and downward deviations becomes apparent already in the 

first approximation. In the second approximation we have the following relation for the 

above difference: 

AY = Y (0) + Y (n) = --2/,~ - (2/3E)2 (2.7) 

Let us denote by y_ the maximum deviation of the pendulum during its upward motion, and 

by Y+A the modulus of the amplitude difference. Since y_< 0, we have ?+A = - k + Y+). 
Then, according to (2.7) we obtain 

Y+A = '/@Y+ (1 + */A (2.8) 

It will be shown below that formula (2.8) holds for amplitudes y+ significantly larger 

than would be expected. 

We note that formula (2.8) can be derived more simply by using the energy integral. We 

shall use this method below for the general non-linear case. 

3. Non-linear oscillations. We shall write the complete equation of non-linear 

oscillations (1.2), taking (1.3) into account, in the form 

y" + (&@ainV - 3~0,~ cos y) sin y = 0 (3.1) 
03 = D,m-'L-', m,,' = g,RO-l = V,,aRo-a 

This equation admits of an energy integral. If y’=O and y=y, when t =O, then 

multiplying (3.1) by y' and integrating with respect to y from y+ to y, we obtain 

y** + ‘F Fdy=O 
t+ 

(3.2) 

F = (~0%9~~nV - 3~0,~ cos y)sin y 

The integral corresponding to the second term in the integrand can be foundbyelementary 

methods; however, since it does not give any advantage when numerical integration is carried 
out, we shall not separate it out. 

If Y reaches its maximum value y_ when the satellite probe deviates upwards, then 
y' = 0. and the integral in (3.2) vanishes. This condition determines the amplitude y_ as 
a function of y+, and of the parameters 6 and p = w,*//o'. 

We can represent the integral in (3.2) in the form of an expansion in powers of 6. 

Restricting ourselves to the linear approximation in 6, we obtain 
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- Oosy_ f 00s y+ + V& (y_ - y+) - ‘I.8 (sin 2y_ - (3.3) 
sin Ly,) + *flzp (cos* y_ - cos* r,) = 0 

Let us write Y.. = -y.+ (1 + A), substitute y_ into (3.3) and linearize it with respect 
to A. We obtain 

YP = 
y+ -sin y+ cos y+ 

(w*-%~Qcos~+)siny, 6 

When y+<f, the formula transforms into a linear version of (2.8). The process of 
computing the subsequent terms of the expansion of A in a series in 6 can obviously be 
continued, but the calculations are quite bulky and therefore not given here. 

Let us turn our attention to the results of integrating the equation (3.2) numerically. 
The solution depends on two parameters, S and p. The presence of a difference in (3.1) 
within the brackets preceding siny, restricts the range of parameters for which the 
oscillations relative to y =O are stable. When 6 =O, i.e. in the case when the 
atmosphere is homogeneous, the expression within the brackets becomes automatically non- 
negative when 

oa> 3wr* 
i.e., when ~(‘1~. 

(3.5) 

Fig.2 Fig.3 

However, when the atmosphere is not homogeneous, i.e., when 6 > 0, the resistance D 
decreases, by virtue of (1.3), with y, and the expression within the brackets may vanish 
even when ;the condition (3.5) holds. Estimates show that when 6<0.5, it is sufficient to 
replace condition (3.5) by a slightly stronger condition oz>40,*, i.e. p < '14. In this 
case the oscillations relative to y = 0 will be stable. 

Figures 2 and 3 show the results of solving numerically the integrodifferential Eq.(3.2) 
which was reduced to the form 

The integral I was evaluated using Simpson's rule. The first integral was determined 
using the same method, with a non-uniform step in y except for the first and last interval 
in y. When Y-Y+, the integral I is replaced by the expression I= -F(y+f(y-yy,) which 
was substitutedinto (3.6) and integrated, so that 

-- 
t=Zfy+ -y/J2P(y+f as r-0. The same 

method was used to the case when y--_. 
When carrying out the numerical integration , we assumed that o=l. This condition 

implies a change to dimensionless time et , and the solution will, in this case, depend on the 
parameters 6 and op. 

Figure 2 shows the phase trajectories of the family of oscillations for the initial 
deviation y,, = n/3 when o0 =O and 6 = 0,0.2;0.5 (solid lines), when o,, = 0.2 and 6 = 0, 
0.2, 0.5 (the dashed lines), and when 6 =i 0 and o. ='i,;O.4 (the dot-dash lines 1 and 2). 
We can see a clear dependence on the atmosphere inhomogeneity parameter 8 reflected in the 
lack of symmetry of the trajectories relative to y -0. Taking into account the transferred 
rotational motion will distort the phase trajectory and , in accordance with (2.2), will 
increase the period of the oscillations. 

The difference in the amplitudes as a function of 6 is shown in Fig.3 by the solid lines. 
It is interesting to note that the difference y+A can be approximated quite well by formula 
(2.8), so that the family of curves for different @a can be approximately reduced to a single 
curve. The dependence of the difference of the amplitudes on the homogeneity parameter 6, 
enables us to determine the index of inhomogeneity of the density of the atmosphere from the 
measured values of y+A. 
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The inhomogeneity of the atmosphere inwhichthe oscillations take place leads to the fact 

that the lower part of the trajectory is traversed by the pendulum faster, and the upper part 

more slowly than in the case when the atmosphere is homogeneous. Figure 3 shows the dependence 
of the oscillation half-periods ?'+ and T_ for the downward and upward deviations, on the 

inhomogeneity parameter 6 (the dashed lines). Using these relations, or simplythedependence 

of the difference AT = T_- T, on 6, which differs little from the direct proportionality and 

depends weakly on oO. we can also determine 6 using the measured value of the difference 

AT. 
In all the motions discussed above, the reaction N of the line becomes equal to zero. 

In general, the oscillations are not planar. 
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THE SOLUTIONS OF THE EQUATIONS OF MOTION OF THE 
KOVALEVSKAYA TOP IN FINITE FORM* 

A.I. DOKSHEVICH 

Elementary transformations of phase variables are used to obtain several 

novel forms of the system of Euler-Poisson (EP) equations with Kovalevskaya 

conditions /l/. It is shown that the use of such equations makes possible 

not only the detection, but also the construction in a finite explicit 

form, of a solution for all four classes of degenerate motions mentioned 

by Appel'rot in /4/, and inadequately studied up to now, without using 

Kovalevskaya quadratures /2, 3/. In particular, an explicit solution is 

given in a novel form for the third class. The new forms of the equations 

of motion are used in a unique manner to study some particular results of 

investigation of degenerate solutions obtained by various methods /5-8/. 

1. The initial equations. Using the Kovalevskaya conditions, we will write the EP 

equations and their algebraic first integrals in the form 

2p' = qr, 2q’ = -rp - coye, r* = coy’ 

y’ = ry’ - qy”, y” = py’ - ry, y”’ = qy - py’ 

2 (p” + q*) f P - 2c,y = 61,, 2 (py + qy’) + ry” = 21 

y’ + y” + y*a = 1, (p’ - 9” + COY’)’ -t(2pq + COY’)* = k’ 

W) 

0.2) 

where a dot denotes the time derivative. Let us introduce the complex variables 

x, = P + e,iq, 5, = (P + e,iqIa + co (Y + e,$‘), n - 1, 2 

i = f-1, sl = 1, e2 = -1 
(1.3) 

and rewrite (1.1) and (1.2) in the form 

28, ix,’ = rx, -I- c,y", 2ir’ = xsa - x1* + E1 - 52 

e,&' = r%,, 2iy"' = %2.x1 - EIXa + x1X2 (X1 - XZ) 
(1.4) 
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